Âé¶¹´«Ã½Ó³»­

Information-Theoretic Tools to Understand Distributed Source Coding in Neuroscience

Submitted by admin on Wed, 10/23/2024 - 01:52

This paper brings together topics of two of Berger’s main contributions to information theory: distributed source coding, and living information theory. Our goal is to understand which information theory techniques can be helpful in understanding a distributed source coding strategy used by the natural world. Towards this goal, we study the example of the encoding of location of an animal by grid cells in its brain.

Secure Source Coding Resilient Against Compromised Users via an Access Structure

Submitted by admin on Wed, 10/23/2024 - 01:52

Consider a source and multiple users who observe the independent and identically distributed (i.i.d.) copies of correlated Gaussian random variables. The source wishes to compress its observations and store the result in a public database such that (i) authorized sets of users are able to reconstruct the source with a certain distortion level, and (ii) information leakage to non-authorized sets of colluding users is minimized. In other words, the recovery of the source is restricted to a predefined access structure.

Neural Distributed Source Coding

Submitted by admin on Wed, 10/23/2024 - 01:52

We consider the Distributed Source Coding (DSC) problem concerning the task of encoding an input in the absence of correlated side information that is only available to the decoder. Remarkably, Slepian and Wolf showed in 1973 that an encoder without access to the side information can asymptotically achieve the same compression rate as when the side information is available to it. This seminal result was later extended to lossy compression of distributed sources by Wyner, Ziv, Berger, and Tung.

Controlled Privacy Leakage Propagation Throughout Overlapping Grouped Learning

Submitted by admin on Wed, 10/23/2024 - 01:52

Federated Learning (FL) is the standard protocol for collaborative learning. In FL, multiple workers jointly train a shared model. They exchange model updates calculated on their data, while keeping the raw data itself local. Since workers naturally form groups based on common interests and privacy policies, we are motivated to extend standard FL to reflect a setting with multiple, potentially overlapping groups.

Long-Term Fairness in Sequential Multi-Agent Selection With Positive Reinforcement

Submitted by admin on Wed, 10/23/2024 - 01:52

While much of the rapidly growing literature on fair decision-making focuses on metrics for one-shot decisions, recent work has raised the intriguing possibility of designing sequential decision-making to positively impact long-term social fairness. In selection processes such as college admissions or hiring, biasing slightly towards applicants from under-represented groups is hypothesized to provide positive feedback that increases the pool of under-represented applicants in future selection rounds, thus enhancing fairness in the long term.

Information Velocity of Cascaded Gaussian Channels With Feedback

Submitted by admin on Wed, 10/23/2024 - 01:52

We consider a line network of nodes, connected by additive white noise channels, equipped with local feedback. We study the velocity at which information spreads over this network. For transmission of a data packet, we give an explicit positive lower bound on the velocity, for any packet size. Furthermore, we consider streaming, that is, transmission of data packets generated at a given average arrival rate. We show that a positive velocity exists as long as the arrival rate is below the individual Gaussian channel capacity, and provide an explicit lower bound.

Addressing GAN Training Instabilities via Tunable Classification Losses

Submitted by admin on Wed, 10/23/2024 - 01:52

Generative adversarial networks (GANs), modeled as a zero-sum game between a generator (G) and a discriminator (D), allow generating synthetic data with formal guarantees. Noting that D is a classifier, we begin by reformulating the GAN value function using class probability estimation (CPE) losses. We prove a two-way correspondence between CPE loss GANs and f-GANs which minimize f-divergences. We also show that all symmetric f-divergences are equivalent in convergence.

Throughput and Latency Analysis for Line Networks With Outage Links

Submitted by admin on Wed, 10/23/2024 - 01:52

Wireless communication links suffer from outage events caused by fading and interference. To facilitate a tractable analysis of network communication throughput and latency, we propose an outage link model to represent a communication link in the slow fading phenomenon. For a line-topology network with outage links, we study three types of intermediate network node schemes: random linear network coding, store-and-forward, and hop-by-hop retransmission. We provide the analytical formulas for the maximum throughputs and the end-to-end latency for each scheme.

JPEG Compliant Compression for DNN Vision

Submitted by admin on Wed, 10/23/2024 - 01:52

Conventional image compression techniques are primarily developed for the human visual system. However, with the extensive use of deep neural networks (DNNs) for computer vision, more and more images will be consumed by DNN-based intelligent machines, which makes it crucial to develop image compression techniques customized for DNN vision while being JPEG compliant. In this paper, we revisit the JPEG rate distortion theory for DNN vision. First, we propose a novel distortion measure, dubbed the sensitivity weighted error (SWE), for DNN vision.