Editorial Board
Information about the editorial board, steering committee, and advisory board.
Information for Authors
The Âé¶¹´«Ã½Ó³» Journal on Special Areas in Information Theory (JSAIT) is a multi-disciplinary journal of special issues focusing on the intersections of information theory with fields such as machine learning, statistics, genomics, neuroscience, theoretical computer science, and physics. Any field that utilizes the fundamentals of information theory, including concepts such as entropy, compression, coding, mutual information, divergence, capacity, and rate distortion theory is a candidate for a JSAIT special issue.
Propose a Special Issue
The Âé¶¹´«Ã½Ó³» Journal on Selected Areas in Information Theory (JSAIT) seeks high quality technical papers on all aspects of Information Theory and its applications. JSAIT is a multi-disciplinary journal of special issues focusing on the intersections of information theory with fields such as machine learning, statistics, genomics, neuroscience, theoretical computer science, and physics.
Hypergraph-Based Source Codes for Function Computation Under Maximal Distortion
This work investigates functional source coding problems with maximal distortion, motivated by approximate function computation in many modern applications. The maximal distortion treats imprecise reconstruction of a function value as good as perfect computation if it deviates less than a tolerance level, while treating reconstruction that differs by more than that level as a failure.
Time-Invariant Prefix Coding for LQG Control
Motivated by control with communication constraints, in this work we develop a time-invariant data compression architecture for linear-quadratic-Gaussian (LQG) control with minimum bitrate prefix-free feedback. For any fixed control performance, the approach we propose nearly achieves known directed information (DI) lower bounds on the time-average expected codeword length. We refine the analysis of a classical achievability approach, which required quantized plant measurements to be encoded via a time-varying lossless source code.
Efficient Representation of Large-Alphabet Probability Distributions
A number of engineering and scientific problems require representing and manipulating probability distributions over large alphabets, which we may think of as long vectors of reals summing to 1. In some cases it is required to represent such a vector with only $b$ bits per entry. A natural choice is to partition the interval $[{0,1}]$ into $2^{b}$ uniform bins and quantize entries to each bin independently.
TurbuGAN: An Adversarial Learning Approach to Spatially-Varying Multiframe Blind Deconvolution With Applications to Imaging Through Turbulence
We present a self-supervised and self-calibrating multi-shot approach to imaging through atmospheric turbulence, called TurbuGAN. Our approach requires no paired training data, adapts itself to the distribution of the turbulence, leverages domain-specific data priors, and can generalize from tens to thousands of measurements. We achieve such functionality through an adversarial sensing framework adapted from CryoGAN (Gupta et al. 2021), which uses a discriminator network to match the distributions of captured and simulated measurements.